Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Angela Möller* and Oliver Kerp

Institut für Anorganische Chemie, Universität zu Köln, Greinstrasse 6, D-50939 Köln, Germany

Correspondence e-mail:
angela.moeller@uni-koeln.de

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{Na}-\mathrm{O})=0.005 \AA$
R factor $=0.036$
$w R$ factor $=0.074$
Data-to-parameter ratio $=14.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Dirubidium sodium manganate(V), $\mathbf{R b}_{\mathbf{2}} \mathbf{N a M n O}_{4}$

$\mathrm{Rb}_{2} \mathrm{NaMnO}_{4}$ has been obtained from a redox reaction in silver crucibles. The crystal structure contains isolated $\left[\mathrm{MnO}_{4}\right]$ units, which are slightly distorted from ideal tetrahedral symmetry. $\mathrm{Rb}_{2} \mathrm{NaMnO}_{4}$ crystallizes isotypic with $\mathrm{Cs}_{2} \mathrm{NaVO}_{4}$ and $\mathrm{Cs}_{2} \mathrm{NaAsO}_{4}$.

Comment

$\mathrm{Rb}_{2} \mathrm{NaMnO}_{4}$ crystallizes isotypic with $\mathrm{Cs}_{2} \mathrm{NaVO}_{4}$ (Kissel \& Hoppe, 1990) and $\mathrm{Cs}_{2} \mathrm{NaAsO}_{4}$ (Schneidersmann \& Hoppe, 1991), but not with $\mathrm{K}_{2} \mathrm{NaMnO}_{4}$ (Fischer \& Hoppe, 1992a) or $\mathrm{Cs}_{2} \mathrm{LiMnO}_{4}$ (Fischer \& Hoppe, 1992b). The structures of the $\mathrm{Cs}_{2} \mathrm{Na}_{2} \mathrm{O}_{4}$ type contain the pentavalent chemical elements ($M=\mathrm{V}, \mathrm{Mn}, \mathrm{As}$) in an almost tetrahedral coordination (Fig. 1). In all these cases, the discrete complex anion $\left[\mathrm{MO}_{4}\right]$ is slightly distorted, with one angle $\mathrm{O}-M-\mathrm{O}$ close to 106° relating to the two crystallographic equivalent O atoms O 3 (site 4f). These O atoms display the longest interatomic distances within the ortho-metallate(V) anions. The average $M-\mathrm{O}$ distances are $1.72,1.71$ and $1.69 \AA$ for $M=\mathrm{V}, \mathrm{Mn}$ and As , respectively. The coordination of the Na atoms in $\mathrm{Rb}_{2} \mathrm{NaMnO}_{4}$ can be described as a square pyramid of O atoms, with interatomic distances ranging from 2.262 (6) to 2.415 (4) \AA. The basal O atoms connect the $\left[\mathrm{NaO}_{5}\right]$ units via trans edges into zigzag chains along [010]. The coordination sphere of Rb1, with $\mathrm{Rb} 1-\mathrm{O}$ distances of 2.923 (6)3.0560 (11) Å, corresponds to a distorted pentagonal bipyramid. These polyhedra are linked parallel to the (001) plane via O 1 , forming corrugated layers of four-membered rhomboidal entities, $\left[\mathrm{Rb1} 1_{2} \mathrm{O}_{2}\right]$. The second coordination sphere of Rb 1 , with $\mathrm{Rb} 1-\mathrm{O} 3=3.594(5) \AA(2 \times)$ has not been considered in Fig. 2, because the first coordination shell is already almost spherical within the range of the sum of the ionic radii ($2.92 \AA$; Shannon, 1976). This is not the case for Rb2, where only four coordinating O atoms are observed in the same range of interatomic distances [2.805 (6)-3.045 (6) Å]. Along [010], these non-planar square units, $\left[\mathrm{Rb} 2 \mathrm{O} 1 \mathrm{O} 2_{3}\right]$, share cis edges via O2, leading to a double-chain arrangement. Further distances between 3.345 (4) and $3.462(5) \AA$ increase the coordination of Rb 2 to 10 and complement the connectivity in the [100] direction of the underlying chains to the formation of layers (Fig. 2).

Experimental

$\mathrm{Rb}_{2} \mathrm{NaMnO}_{4}$ has been obtained from the reaction of $\mathrm{Na}_{2} \mathrm{O}, \mathrm{Rb}_{2} \mathrm{O}$, Mn and CdO (molar ratio 2.5:2.5:1:1) in silver crucibles, which were loaded and sealed under an argon atmosphere. For protection reasons, these containers were jacketed under vacuum in silica ampoules. The reaction mixture was heated directly to 523 K and

Received 17 June 2005 Accepted 28 June 2005 Online 6 July 2005
then at a heating rate of $2 \mathrm{~K} \mathrm{~h}^{-1}$ to 873 K . The reaction time was 14 d , then the same cooling rate was used to 523 K , after which the furnace was switched off. Green-blue single crystals of irregular shape were selected under a microscope in an argon-filled dry-box and jacketed in glass capillaries.

Crystal data

$\mathrm{Rb}_{2} \mathrm{Na}\left(\mathrm{MnO}_{4}\right)$
$M_{r}=312.87$
Monoclinic, $P 2_{1} / m$
$a=5.9078$ (13) \AA
$b=5.9821$ (13) \AA
$c=7.9503$ (19) \AA
$\beta=92.22$ (3) ${ }^{\circ}$
$V=280.76(11) \AA^{3}$
$Z=2$

Data collection

Stoe IPDS-I diffractometer
φ scans
Absorption correction: numerical
[XRED32 (Stoe \& Cie, 2001) and
XSHAPE (Stoe \& Cie, 1999)]
$T_{\text {min }}=0.027, T_{\text {max }}=0.086$
2023 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.074$
$S=1.01$
670 reflections
46 parameters

$$
\begin{aligned}
& D_{x}=3.701 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 2665 \\
& \text { reflections } \\
& \theta=2.6-28.1^{\circ} \\
& \mu=19.57 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Irregular block, green-blue } \\
& 0.30 \times 0.15 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

670 independent reflections 556 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.107$
$\theta_{\text {max }}=27.0^{\circ}$
$h=-7 \rightarrow 7$
$k=-7 \rightarrow 7$
$l=-10 \rightarrow 10$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0291 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$ 。
$\Delta \rho_{\text {max }}=1.01 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-1.51 \mathrm{e} \AA^{-3}$

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

Rb1-O2	2.923 (6)	$\mathrm{Rb} 2-\mathrm{O} 3^{\text {ii }}$	3.345 (4)
$\mathrm{Rb} 1-\mathrm{O} 1^{\text {i }}$	2.966 (4)	$\mathrm{Rb} 2-\mathrm{O}^{\text {vii }}$	3.402 (4)
Rb1-O1	2.971 (4)	$\mathrm{Rb} 2-\mathrm{O}^{\text {viii }}$	3.402 (4)
$\mathrm{Rb} 1-\mathrm{O} 3{ }^{\text {ii }}$	2.989 (4)	$\mathrm{Rb} 2-\mathrm{O} 3^{\text {ix }}$	3.462 (5)
$\mathrm{Rb} 1-\mathrm{O} 3{ }^{\text {iii }}$	2.989 (4)	$\mathrm{Rb} 2-\mathrm{O}^{\mathrm{x}}$	3.462 (5)
$\mathrm{Rb1}-\mathrm{O} 1^{\text {iii }}$	3.0560 (11)	Mn1-O1	1.689 (6)
$\mathrm{Rb} 1-\mathrm{O} 1^{\text {iv }}$	3.0560 (11)	$\mathrm{Mn} 1-\mathrm{O} 2^{\mathrm{xi}}$	1.702 (5)
$\mathrm{Rb} 1-\mathrm{O}^{\text {v }}$	3.594 (5)	Mn1-O3	1.708 (3)
$\mathrm{Rb1} 1-\mathrm{O} 3$	3.594 (5)	$\mathrm{Mn} 1-\mathrm{O}^{\text {v }}$	1.708 (3)
$\mathrm{Rb} 2-\mathrm{O} 1$	2.805 (6)	$\mathrm{Na}-\mathrm{O} 2$	2.262 (6)
$\mathrm{Rb} 2-\mathrm{O} 2^{\text {iv }}$	3.0413 (11)	$\mathrm{Na}-\mathrm{O}^{\text {xii }}$	2.316 (4)
$\mathrm{Rb} 2-\mathrm{O} 2^{\text {iii }}$	3.0413 (11)	$\mathrm{Na}-\mathrm{O}^{\text {xiii }}$	2.316 (4)
$\mathrm{Rb} 2-\mathrm{O} 2^{\text {vi }}$	3.045 (6)	$\mathrm{Na}-\mathrm{O3}^{\text {v }}$	2.415 (4)
$\mathrm{Rb} 2-\mathrm{O} 3{ }^{\text {iii }}$	3.345 (4)	$\mathrm{Na}-\mathrm{O} 3$	2.415 (4)
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 2^{\text {xi }}$	110.8 (2)	$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O}^{\text {v }}$	110.21 (17)
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 3$	110.21 (17)	$\mathrm{O} 2^{\mathrm{xi}}-\mathrm{Mn} 1-\mathrm{O3}^{\mathrm{v}}$	109.86 (18)
$\mathrm{O} 2^{\text {xi }}-\mathrm{Mn} 1-\mathrm{O} 3$	109.86 (18)	$\mathrm{O} 3-\mathrm{Mn} 1-\mathrm{O}^{\text {v }}$	105.8 (2)

Symmetry codes: (i) $x-1, y, z$; (ii) $-x+1, y+\frac{1}{2},-z+1$; (iii) $-x+1,-y,-z+1$; (iv) $-x+1,-y+1,-z+1$; (v) $x,-y+\frac{1}{2}, z$; (vi) $x+1, y, z+1$; (vii) $-x+2, y+\frac{1}{2},-z+1$; (viii) $-x+2,-y,-z+1$; (ix) $x,-y+\frac{1}{2}, z+1$; (x) $x, y, z+1$; (xi) $x+1, y, z$; (xii) $-x+1,-y,-z$; (xiii) $-x+1, y+\frac{1}{2},-z$.

The highest peak was observed $1.04 \AA$ from Rb 2 and the deepest hole 0.68 A from Rb1.

Data collection: IPDS (Stoe, 1997); cell refinement: IPDS; data reduction: XRED32 (Stoe \& Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: CIF-Editor (Wieczorrek, 2004).

Figure 1
Perspective view of the crystal structure of $\mathrm{Rb}_{2} \mathrm{NaMnO}_{4}$, showing the atom-numbering scheme and 50% probability displacement ellipsoids.

Figure 2
The coordination spheres and connectivity of $\mathrm{Rb} 1, \mathrm{Rb} 2$ and Na , respectively.

This work has been supported by the Deutsche Forschungsgemeinschaft (SFB 608).

References

Brandenburg, K. (2005). DIAMOND. Version 3.0c. Crystal Impact GbR, Bonn, Germany.
Fischer, D. \& Hoppe, R. (1992a). J. Alloys Compd, 183, 187-197.
Fischer, D. \& Hoppe, R. (1992b). Z. Anorg. Allg. Chem. 618, 59-62.
Kissel, J. \& Hoppe, R. (1990). Z. Anorg. Allg. Chem. 587, 29-38.
Schneidersmann, C. \& Hoppe, R. (1991). Z. Anorg. Allg. Chem. 605, 67-74.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (1997). IPDS. Version 2.87. Stoe \& Cie, Darmstadt, Germany.
Stoe \& Cie (1999). XSHAPE. Version 1.06. Stoe \& Cie, Darmstadt, Germany.
Stoe \& Cie (2001). XRED32. Version 1.22. Stoe \& Cie, Darmstadt, Germany.
Wieczorrek, C. (2004). CIF-Editor. Version 2.0. Universität zu Köln, Germany.

